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1. LINEAR FAMILIES AND THE HAAR CONDITION

Let X be a compact normal space and Va closed subset of X. Let C(V, X)
be the family of continuous real functions on X which vanish on V. Inmost
cases of interest V will be empty but there exist many cases of interest in
which V consists of a single point.

DEFINITION. An n-dimensional linear subspace of C(V, X) is said to be
a Haar subspace (on X) with null space V if only the zero element vanishes
on n points of X '"'-' V.

DEFINITION. The functions rPl ,..., rPn of C(V, X) form a Chebyshev set
on X with null set V if no nontrivial linear combination of them vanishes
on n points of X '"'-' V.

Therefore, a basis {rPl ,..., rPn} of a linear subspace of qv, X) is a Chebyshev
set if and only if the linear subspace is a Haar subspace.

2. THE CHEBYSHEV APPROXIMATION PROBLEM

For g E C(X) define

II g II = sup{! g(x) I: x EX}.

Let F be an approximating function with parameter space P such that
F(A, .) E C(V, X) for all A E P. In particular Fmay be a linear approximating
function

n

F(A, x) = L akrP/lJx),
k~l

The Approximation problem is: Given fE C(V, X) to find a parameter
A* E P for which Ilf - F(A, ')[1 is minimal. Such a parameter A* is called
best and F(A*, .) is called a best Chebyshev approximation to f

The following theorem is a generalization of the Haar Theorem.
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THEOREM 1. A necessary and sufficient condition that each fE C(V, X)
have a unique best Chebyshev approximation by an n-dimensional linear
subspace L is that L be a Haar subspace whose null space is contained in V.

Proof Sufficiency is proven in [7]. We now prove necessity. Let L not
be a Haar subspace; then there exists pEL not vanishing identically which
vanishes on n distinct points Xl"'" Xn of X,..,., V. From L being of dimension
at most n - 1 on {Xl"'" x n} it can be seen that there exist signs al , ... , an

such that there is no q E L such that

sgn(q(Xi» = ai , i = 1,... , n. (0)

Define g(Xi) = ai, i = 1,... , n, and g(x) = 0 for X E V, then g is continuous
on {Xl"'" Xn} U V. By the Tietze extension theorem there is a continuous
extension of g to X such that II g [[ = 1. Let

j(X) = g(x)[Ilp II - [p(x)ll,

then I j(Xi) I = II p 1[, i = 1,..., n and by choice off, g, we have Ilfll = II p II·
If Ilf - q II < IlfII then q would satisfy (0), which is impossible for q E L.
Hence 0 is best and since

[j(X) - p(X) I :s;;; Ij(x)1 + Ip(x)1 :s;;; II p II - [p(x)1 + Ip(X)I,

p is also best to f
In the case of linear Chebyshev approximation on an interval [rx,,8] we

have as a special case of the theory of [5]

THEOREM 2. Let L be a Haar subspace of dimension n on [rx,,8] with null
space V, which consists ofat most rx and ,8. A necessary and sufficient condition
that F(A, .) E L be a best linear Chebyshev approximation to f E C(V, [rx, ,8])
is that f - F(A, .) alternate n times. Best approximations are unique.

The above characterization and uniqueness result is valid for approxima­
tion on a compact subset Y of [rx, ,8] such that y,..,., V contains n or more
points, where alternation is on Y.

3. L p NORMS

Let us consider L:J) norms. An inspection of the proof of Cheney (1, 220]
gives a result stated as a problem in (1, 223, Problem 11].

THEOREM 3. Let L be a Haar subspace on (rx, ,8), then each fE C[a,,8]
has a unique best Ll approximation from L.
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In [4] is given a theorem concerning oscillation of the error curve of a best
linear approximation with respect to a generalized integral norm on an
interval in terms of Haar subspaces. In the case of approximation with
respect to an Lv norm, 1 :(; p < 00, the theorem reduces to the following:

THEOREM 4. Let L(A, .) be a best linear approximation to f =F L(A, -)
on [0:, ,8]. If the linear family contains a Haar subspace of dimension n on
(0:, ,8), then

(i) f - L(A, .) has n sign changes, or

(ii) p = 1 and fL{x:f(x) - L(A, x) = O} > O.

In [8] is given a theorem concerning oscillation of the error curve of a best
linear approximation with respect to a generalized integral norm on a finite
subset of an interval in terms of Haar subspaces. In the case of approximation
with respect to an Lv norm, 1 < p < 00, the theorem reduces to the following:

THEOREM 5. Let L(A, .) be a best linear approximation to f --;- L(A, .)
on a finite subset of [0:, ,8]. If the linear family contains a Haar subspace of
dimension n on [c.:, ,8], thenf - L(A, .) has n sign changes.

THEOREM 6. Let L(A, .) be a best approximation with respect to a weighted
Lv "norm," 0 < p < 1, on finite X. Let the linear family contain a Haar
subspace of dimension n on X. Then f - L(A, -) has at least n zeros on X.

We use the arguments of Rice [13, 289-290]. The theorem also holds for
L(A, .) locally best.

Study of L 1 approximation by constants on a set X of two points shows
that best L1 approximations on finite X need not oscillate (as in Theorem 5)
or interpolate (as in Theorem 6). However, best L1 approximations must
weakly interpolate [13, 278, Theorem 13-7; 8, Theorem 3]. The results of
Rice [12, pp. 114-116] also apply.

4. SPACES OF DEFINITION

We consider on what spaces X can a Chebyshev set exist. Consider first
the case when the Chebyshev set consists of one element. If V is empty, then
the constant function 1 forms a Chebyshev set. Let X be a perfectly normal
space (which is true if it is a metric space) and V be a closed subset of X,
then there exists 4> E C(X) such that 4>(x) = 0 if and only if x E V [3, 148].
We see, therefore, that the existence of a Chebyshev set of one element does
not restrict X significantly.
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The existence of a Chebyshev set of two or more elements does restrict X
greatly [2, p. 1028; 9].

THEOREM 7. Let X be a compact Hausdorff space. If a Chebyshev set of
two or more elements exists on X with no null points, then X is homeomorphic
to a closed subset of the circumference of the unit circle in 2-space.

If there are null points, X can be slightly more complex. For example X
can be a figure eight, consisting of two circles Xl and X 2 touching at a single
point X o' {l, x} is a Chebyshev set on [-1, 1]. Hence by the following
lemma T = {(x - 1) x(x + 1), (x - 1) x2(x + I)} is a Chebyshev set with
null set {-1, 0, I}. We can map [-1, 1] continuously onto the figure eight
so that (-1, 0) is mapped 1:1 onto Xl , (0, 1) is mapped 1:1 onto X 2 , and
{-1, 0, I} are mapped onto X o . With the corresponding change of variable,
T is a Chebyshev set on the figure eight with {xo} the null set.

5. THEORY CONCERNING CHEBYSHEV SETS

In the following * denotes multiplication.

LEMMA 1. Let s be a continuous nonnegative function on X and VI be its
set of zeros. Let {cPl ,..., cPn} be a Chebyshev set with null set V2. Then
{s * cPl ,..., S * cPn} is a Chebyshev set with null set VI U V2 •

The following lemma (proved by Rolle's Theorem) is useful in finding
Chebyshev sets.

LEMMA 2. Let Nl ,... , o/n} be a Chebyshev set on [0, a] whose null set
contains at most {O, a}. Let cP/ = o/i, i = 1,... , n, then {I, cPl ,..., cPn} is a
Chebyshev set on [0, a].

LEMMA 3. Let {o/l ,..., o/n} be a Chebyshev set on [0, a] whose null set
contains at most {O, a}. Let cP/ = o/i and (MO) = 0, i = 1,... , n; then
{cPl ,..., cPn} is a Chebyshev set on [0, a] with null set {O}.

The proof is similar to that for Lemma 2.

LEMMA 4. Let cP<nl be continuous and nonvanishing on (a, fJ); then
{I, x, ... , x n-\ cP} is a Chebyshev set on [a, fJ].

This is problem 8 of [1, 77] and is proved by Rolle's Theorem.
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LEMMA 5. Let {<p, lj;} be in Cn[ex, 13]. Let lj;\n) not vanish on (ex, 13) and <p\n)
have at most one zero in (ex,f3). Let cp<nlN<nl be strictly monotonic on (ex, f3).
Then {I,... , xn-\ cp, lj;} is a Chebyshev set on [ex, 13].

Proof Suppose

L(A, x) = a1 + ... + anxn- 1 + an+l<jJ(x) + an+2!f;(x)

has n + 2 zeros on [ex,f31. The first possibility is that an+! = an+2 = O.
Since {l, ... , xn - 1} is a Chebyshev set, this implies A = O. We can, therefore,
suppose that one of aMI' an+2 is nonzero. Suppose first that an+2 = O. In this
case Dnl(A, x) = an+1cp<nl(x) has two zeros in (ex, 13), contrary to hypothesis.
Next let an+2 oF O. In this case Dnl(A, x) = an+14>\nl(x) + an+2lj;<n)(x) has
two zeros in (ex, 13), hence an+lCP<n)(x)N<n)(x) + an+2 has two zeros, contrary
to strict monotonicity of cp(nlN(nl.

We consider the case where 4> = xlj;'. If xlj;<n+11N<nl is strictly monotonic
on (ex, /3) and !f;<n) does not vanish on (ex, /3), (i) ep<nl = xlj;(n+!l + n!f;<n) is
strictly monotonic and hence has at most one zero on (ex, /3), and
(ii) <jJ(nlN<n) = [xlj;<n+1)N(n1 l + n is strictly monotonic.

COROLLARY. Let!f; be in cn+1[ex,f31. Let !f;<n) not vanish on (ex,f3). Let
xlj;(n+11N<n) be strictly monotonic on (ex, f3). Then {l, ... , xn-\ lj;, xf} is a

Chebyshev set on [ex, 131.

THEOREM 8. Let T be a Chebyshev set on [~ex, ex] and be composed of
even functions {4>1 ,... , CPn} and odd functions {!f;l ,... , !f;m}. The even set is a
Chebyshev set on [0, ex]. The odd set is a Chebyshev set with null point 0 on
[0, ex]'

Proof Letfbe a given element of qo, ex] then by defining

fe-x) =f(x) °~ x ~ iX,

fbecomes an even element of q -ex, ex). Let E + 0 be a best approximation
by T to f on [- ex, ex], E a sum of even functions and 0 a sum of odd func­
tions. The error curve of this best approximation is

f(x) - E(x) - O(x) = fe-x) - E(-x) + O(-x),

and so it follows that

max{1 f(x) - E(x) - O(x)l: -ex ~ X ~ ex}

= max{lf(x) - E(x) + O(x): -ex ~ X ~ ex}.

Hence E - 0 is also best. But since T is a Chebyshev system, a best
Chebyshev approximation is unique, hence 0 = O. Consider now the
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problem of best approximation of f on [0, ex] by a linear combination of
{1>1 ,..., 1>n}· Suppose F was a best approximation, then by evenness of
f-F,

max{lf(x) - F(x)l: °~ x ~ ex} = max{lf(x) '- F(x)l: -ex ~ X ~ ex}.

It follows that F is a best approximation on [-ex, ex] by a linear combina­
tion of {1>1 ,..., 1>n}. But there is a unique solution to the problem, namely E.
Since this is true for allf, {1>1 ,... , 1>n} is a Haar subspace on [0, ex].

Let f be a given element of the continuous functions on [0, ex] vanishing
at 0. By defining

f( -x) = -f(-x)

f becomes an odd element of C[ -ex, ex]' Let E + 0 be a best Chebyshev
approximation by T to f on [- ex, ex], E a sum of even functions and 0 a sum
of odd functions. The error curve of this best approximation is

f(x) - E(x) - O(x) = -(fe-x) + E(-x) - O(-x))

and so it follows that

max{1 f(x) - E(x) - o(x) I: -ex ~ X ~ ex}

= max{lf(x) + E(x) - O(x)l: -ex ~ X ~ ex}.

Hence - E + 0 is also best. But since T is a Chebyshev system, a best
approximation is unique and so E = 0. Consider now the problem of best
approximation offon [0, ex] by a linear combination of {ifi1 ,... , ifim}. Suppose
F was a best approximation, then by oddness off - F,

max{j f(x) - F(x)j: °~ x ~ ex} = max{1 f(x) - F(x) I: -ex ~ X ~ ex}.

It follows that F is a best approximation on [-ex, ex] by a linear combination
of {ifi1 ,... , ifim}. But there is a unique solution to this problem, namely O.
Since this is true for allf, N1 ,... , ifim} is a Haar subspace with null point 0.

6. EXAMPLES OF CHEBYSHEV SETS

EXAMPLE 1. {I, x, ... , xn } is a Chebyshev set on any finite interval. Let
us consider arbitrary sets of nonnegative powers. Consideration of the case
{I, x 2} shows that these need not be Chebyshev sets on an interval containing
zero as an interior point. Let ex be positive and consider the interval [0, ex].
Let °< y(l) < ... < yen). Since x" = exp(y log(x)) for y > °and x )': 0,
it can be deduced from the remarks following Example 6 that {x,,(l),... , x,,(nl}
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is a Chebyshev set on [0, IX] with null set to}. If the function 1 is added, it is
a Chebyshev set on [0, IX].

EXAMPLE 2. {I, cos x, sin x, ... , cos(nx), sin(nx)} IS a Chebyshev set on
[-17, 17] with endpoints identified [11, p. 84].

EXAMPLE 3. {I, cos x, ... , cos(nx)} is a Chebyshev set on [0, TIl An
argument in terms of change of variable is used by Remez [11, p. 82], but
we can also use Example 2 and Theorem 8.

EXAMPLE 4. {sin x, ..., sin(nx)} is a Chebyshev set on [0, 'IT] with null set 0
by Example 2 and Theorem 8, or by Example 3 and Lemma 4.

EXAMPLE 5. {exp(Ylx), ... , exp(Ynx)}, Yl < ... < Yn, is a Chebyshev set
on any finite interval. An argument using a special case of Lemma 2 and
induction is given by Remez [11, 80]. This example is a special case of
Example 6 with m(l) = m(l) = ... = men) = 0.

EXAMPLE 6. Let Yl < < Yn' {exp(Ylx), x exp(Ylx), ... , Xm(l) exp(YlX)'
exp(Y2x), ... , X m(2) exp(Y2x), , exp(Ynx), ... , xm(n) exp(Ynx)} forms a Chebyshev
set on any finite interval [lO,p. 313; 11, p. 81].

Let IX be finite. The sets of Examples 5 and 6 are Chebyshev sets on [IX, <Xl]
with null set {<Xl} when Yl < '" < Yn < 0. The sets of Examples 5 and 6
are Chebyshev sets on [IX, <Xl] when Yl < ... < Yn = °and men) = O.

In the following three examples we still have a Chebyshev set if all powers
of x indicated are deleted.

EXAMPLE 7. Let °< Yl < ... < Yn' The set {sinh(Yix), x sinh(Yix),
cosh(Yix), x cosh(Yix): i = 1,... , n} U {I, x,..., x m} is a Chebyshev set on
finite interval. The basis is equivalent to a basis of Example 6with m(i) =
and powers of x added. It remains a Chebyshev set if any pairs {x sinh(Yix),
x cosh(Yix)} are deleted.

EXAMPLE 8. Let °< Yl < ... < Yn' The set {sinh(Yix), x cosh(Yix):
i = 1,... , n} U {x, x 3, ••• , x 2m+1} is a Chebyshev set on [0,,8] with null set to}
by Example 7 and Theorem 8. It remains a Chebyshev set if any elements
x cosh(Yix) are deleted.

EXAMPLE 9. Let °< Yl < ... < Yn' The set {cosh(Yix), x sinh(Yix):
i = 1,... , n} U {I, x2,... , x 2m} is a Chebyshev set on [0, ,8] by Example 7 and
Theorem 8. It remains a Chebyshev set if any elements x sinh(Yix)
deleted.
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EXAMPLE 10. Let 0: be a positive number and -I/o: < Y1 < '" < Yn'
{1/(1 + Y1X)"", 1/(1 + Ynx)} is a Chebyshev set on [0, 0:] by Cauchy's
Lemma [1, p. 195]. If °< Y1 < ... < Yn , it is a Chebyshev set on [0, co]
with null set {oo}. If °= Y1 < ... < Yn, it is a Chebyshev set on [0, 00].

EXAMPLE 11. Let 0: > 0, -1/ex < Y1 < ... < Yn , and none of Y1 ,... , Yn
be zero. {log(1 + Y1X)"", 10g(1 + Ynx)} is a Chebyshev set on [0,0:] with
null point°by Example 10 and Lemma 3. If the function 1 is added, we have
a Chebyshev set on [0, ex] by Example 10 and Lemma 2.

EXAMPLE 12. Let ex > 0 and n, m > 0. Let°< Y1 < ... < Ym < 1/0:2 and
0< 01 < ... < On' {arctanh(Y1x),..., arctanh(Ymx), arctan(OlX), ... , arctan(onx)}
is a Chebyshev set on [0, ex] with null set{O} by Example 10 (with change of
variable to x2) and Lemma 3. If the function 1 is added to the basis, we have
a Chebyshev set on [0, 0:] by Example 10 and Lemma 2.

The corollary to Lemma 5 gives sufficient conditions for {l, 1f;, x1f;'} to be
a Chebyshev set. In [6] are given many 1f; and intervals (fL, v) (sometimes
[0, v]) on which {l, 1f;, x1f;'} is a Chebyshev set.
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