Families Satisfying the Haar Condition

CHARLES B. DUNHAM

Computer Science Department, University of Western Ontario, London, Canada

Communicated by E. W. Cheney

1. Linear Families and the Haar Condition

Let X be a compact normal space and V a closed subset of X. Let C(V, X) be the family of continuous real functions on X which vanish on V. In most cases of interest V will be empty but there exist many cases of interest in which V consists of a single point.

DEFINITION. An *n*-dimensional linear subspace of C(V, X) is said to be a *Haar subspace* (on X) with null space V if only the zero element vanishes on n points of $X \sim V$.

DEFINITION. The functions $\phi_1,...,\phi_n$ of C(V,X) form a Chebyshev set on X with null set V if no nontrivial linear combination of them vanishes on n points of $X \sim V$.

Therefore, a basis $\{\phi_1, ..., \phi_n\}$ of a linear subspace of C(V, X) is a Chebyshev set if and only if the linear subspace is a Haar subspace.

2. THE CHEBYSHEV APPROXIMATION PROBLEM

For $g \in C(X)$ define

$$||g|| = \sup\{|g(x)|: x \in X\}.$$

Let F be an approximating function with parameter space P such that $F(A, \cdot) \in C(V, X)$ for all $A \in P$. In particular F may be a linear approximating function

$$F(A, x) = \sum_{k=1}^{n} a_k \phi_k(x), \qquad P = E_n.$$

The Approximation problem is: Given $f \in C(V, X)$ to find a parameter $A^* \in P$ for which $||f - F(A, \cdot)||$ is minimal. Such a parameter A^* is called best and $F(A^*, \cdot)$ is called a best Chebyshev approximation to f.

The following theorem is a generalization of the Haar Theorem.

Theorem 1. A necessary and sufficient condition that each $f \in C(V, X)$ have a unique best Chebyshev approximation by an n-dimensional linear subspace L is that L be a Haar subspace whose null space is contained in V.

Proof. Sufficiency is proven in [7]. We now prove necessity. Let L not be a Haar subspace; then there exists $p \in L$ not vanishing identically which vanishes on n distinct points $x_1, ..., x_n$ of $X \sim V$. From L being of dimension at most n-1 on $\{x_1, ..., x_n\}$ it can be seen that there exist signs $\sigma_1, ..., \sigma_n$ such that there is no $q \in L$ such that

$$\operatorname{sgn}(q(x_i)) = \sigma_i, \qquad i = 1, ..., n. \tag{0}$$

Define $g(x_i) = \sigma_i$, i = 1,..., n, and g(x) = 0 for $x \in V$, then g is continuous on $\{x_1,...,x_n\} \cup V$. By the Tietze extension theorem there is a continuous extension of g to X such that ||g|| = 1. Let

$$f(x) = g(x)[||p|| - |p(x)|],$$

then $|f(x_i)| = ||p||$, i = 1,..., n and by choice of f, g, we have ||f|| = ||p||. If ||f - q|| < ||f|| then q would satisfy (0), which is impossible for $q \in L$. Hence 0 is best and since

$$|f(x) - p(x)| \le |f(x)| + |p(x)| \le ||p|| - |p(x)| + |p(x)|,$$

p is also best to f.

In the case of linear Chebyshev approximation on an interval $[\alpha, \beta]$ we have as a special case of the theory of [5]

THEOREM 2. Let L be a Haar subspace of dimension n on $[\alpha, \beta]$ with null space V, which consists of at most α and β . A necessary and sufficient condition that $F(A, \cdot) \in L$ be a best linear Chebyshev approximation to $f \in C(V, [\alpha, \beta])$ is that $f - F(A, \cdot)$ alternate n times. Best approximations are unique.

The above characterization and uniqueness result is valid for approximation on a compact subset Y of $[\alpha, \beta]$ such that $Y \sim V$ contains n or more points, where alternation is on Y.

3. L_p Norms

Let us consider L_p norms. An inspection of the proof of Cheney [1, 220] gives a result stated as a problem in [1, 223, Problem 11].

THEOREM 3. Let L be a Haar subspace on (α, β) , then each $f \in C[\alpha, \beta]$ has a unique best L_1 approximation from L.

In [4] is given a theorem concerning oscillation of the error curve of a best linear approximation with respect to a generalized integral norm on an interval in terms of Haar subspaces. In the case of approximation with respect to an L_p norm, $1 \le p < \infty$, the theorem reduces to the following:

THEOREM 4. Let $L(A, \cdot)$ be a best linear approximation to $f \neq L(A, \cdot)$ on $[\alpha, \beta]$. If the linear family contains a Haar subspace of dimension n on (α, β) , then

- (i) $f L(A, \cdot)$ has n sign changes, or
- (ii) p = 1 and $\mu\{x: f(x) L(A, x) = 0\} > 0$.

In [8] is given a theorem concerning oscillation of the error curve of a best linear approximation with respect to a generalized integral norm on a finite subset of an interval in terms of Haar subspaces. In the case of approximation with respect to an L_p norm, 1 , the theorem reduces to the following:

THEOREM 5. Let $L(A, \cdot)$ be a best linear approximation to $f \neq L(A, \cdot)$ on a finite subset of $[\alpha, \beta]$. If the linear family contains a Haar subspace of dimension n on $[\alpha, \beta]$, then $f - L(A, \cdot)$ has n sign changes.

THEOREM 6. Let $L(A, \cdot)$ be a best approximation with respect to a weighted L_p "norm," $0 , on finite X. Let the linear family contain a Haar subspace of dimension n on X. Then <math>f - L(A, \cdot)$ has at least n zeros on X.

We use the arguments of Rice [13, 289–290]. The theorem also holds for $L(A, \cdot)$ locally best.

Study of L_1 approximation by constants on a set X of two points shows that best L_1 approximations on finite X need not oscillate (as in Theorem 5) or interpolate (as in Theorem 6). However, best L_1 approximations must weakly interpolate [13, 278, Theorem 13-7; 8, Theorem 3]. The results of Rice [12, pp. 114-116] also apply.

4. Spaces of Definition

We consider on what spaces X can a Chebyshev set exist. Consider first the case when the Chebyshev set consists of one element. If V is empty, then the constant function 1 forms a Chebyshev set. Let X be a perfectly normal space (which is true if it is a metric space) and V be a closed subset of X, then there exists $\phi \in C(X)$ such that $\phi(x) = 0$ if and only if $x \in V$ [3, 148]. We see, therefore, that the existence of a Chebyshev set of one element does not restrict X significantly.

The existence of a Chebyshev set of two or more elements does restrict X greatly [2, p. 1028; 9].

Theorem 7. Let X be a compact Hausdorff space. If a Chebyshev set of two or more elements exists on X with no null points, then X is homeomorphic to a closed subset of the circumference of the unit circle in 2-space.

If there are null points, X can be slightly more complex. For example X can be a figure eight, consisting of two circles X_1 and X_2 touching at a single point x_0 . $\{1, x\}$ is a Chebyshev set on [-1, 1]. Hence by the following lemma $T = \{(x-1) x(x+1), (x-1) x^2(x+1)\}$ is a Chebyshev set with null set $\{-1, 0, 1\}$. We can map [-1, 1] continuously onto the figure eight so that (-1, 0) is mapped 1:1 onto X_1 , (0, 1) is mapped 1:1 onto X_2 , and $\{-1, 0, 1\}$ are mapped onto x_0 . With the corresponding change of variable, T is a Chebyshev set on the figure eight with $\{x_0\}$ the null set.

5. Theory Concerning Chebyshev Sets

In the following * denotes multiplication.

LEMMA 1. Let s be a continuous nonnegative function on X and V_1 be its set of zeros. Let $\{\phi_1,...,\phi_n\}$ be a Chebyshev set with null set V_2 . Then $\{s*\phi_1,...,s*\phi_n\}$ is a Chebyshev set with null set $V_1 \cup V_2$.

The following lemma (proved by Rolle's Theorem) is useful in finding Chebyshev sets.

- LEMMA 2. Let $\{\psi_1,...,\psi_n\}$ be a Chebyshev set on $[0,\alpha]$ whose null set contains at most $\{0,\alpha\}$. Let $\phi_i'=\psi_i$, i=1,...,n, then $\{1,\phi_1,...,\phi_n\}$ is a Chebyshev set on $[0,\alpha]$.
- LEMMA 3. Let $\{\psi_1,...,\psi_n\}$ be a Chebyshev set on $[0, \alpha]$ whose null set contains at most $\{0, \alpha\}$. Let $\phi_i' = \psi_i$ and $\phi_i(0) = 0$, i = 1,...,n; then $\{\phi_1,...,\phi_n\}$ is a Chebyshev set on $[0, \alpha]$ with null set $\{0\}$.

The proof is similar to that for Lemma 2.

LEMMA 4. Let $\phi^{(n)}$ be continuous and nonvanishing on (α, β) ; then $\{1, x, ..., x^{n-1}, \phi\}$ is a Chebyshev set on $[\alpha, \beta]$.

This is problem 8 of [1, 77] and is proved by Rolle's Theorem.

LEMMA 5. Let $\{\phi, \psi\}$ be in $C^n[\alpha, \beta]$. Let $\psi^{(n)}$ not vanish on (α, β) and $\phi^{(n)}$ have at most one zero in (α, β) . Let $\phi^{(n)}/\psi^{(n)}$ be strictly monotonic on (α, β) . Then $\{1, ..., x^{n-1}, \phi, \psi\}$ is a Chebyshev set on $[\alpha, \beta]$.

Proof. Suppose

$$L(A, x) = a_1 + \dots + a_n x^{n-1} + a_{n+1} \phi(x) + a_{n+2} \psi(x)$$

has n+2 zeros on $[\alpha, \beta]$. The first possibility is that $a_{n+1}=a_{n+2}=0$. Since $\{1,...,x^{n-1}\}$ is a Chebyshev set, this implies A=0. We can, therefore, suppose that one of a_{n+1} , a_{n+2} is nonzero. Suppose first that $a_{n+2}=0$. In this case $L^{(n)}(A,x)=a_{n+1}\phi^{(n)}(x)$ has two zeros in (α,β) , contrary to hypothesis. Next let $a_{n+2}\neq 0$. In this case $L^{(n)}(A,x)=a_{n+1}\phi^{(n)}(x)+a_{n+2}\psi^{(n)}(x)$ has two zeros in (α,β) , hence $a_{n+1}\phi^{(n)}(x)/\psi^{(n)}(x)+a_{n+2}$ has two zeros, contrary to strict monotonicity of $\phi^{(n)}/\psi^{(n)}$.

We consider the case where $\phi = x\psi'$. If $x\psi^{(n+1)}/\psi^{(n)}$ is strictly monotonic on (α, β) and $\psi^{(n)}$ does not vanish on (α, β) , (i) $\phi^{(n)} = x\psi^{(n+1)} + n\psi^{(n)}$ is strictly monotonic and hence has at most one zero on (α, β) , and (ii) $\phi^{(n)}/\psi^{(n)} = [x\psi^{(n+1)}/\psi^{(n)}] + n$ is strictly monotonic.

COROLLARY. Let ψ be in $C^{n+1}[\alpha, \beta]$. Let $\psi^{(n)}$ not vanish on (α, β) . Let $x\psi^{(n+1)}/\psi^{(n)}$ be strictly monotonic on (α, β) . Then $\{1,..., x^{n-1}, \psi, x\psi'\}$ is a Chebyshev set on $[\alpha, \beta]$.

THEOREM 8. Let T be a Chebyshev set on $[-\alpha, \alpha]$ and be composed of even functions $\{\phi_1, ..., \phi_n\}$ and odd functions $\{\psi_1, ..., \psi_m\}$. The even set is a Chebyshev set on $[0, \alpha]$. The odd set is a Chebyshev set with null point 0 on $[0, \alpha]$.

Proof. Let f be a given element of $C[0, \alpha]$ then by defining

$$f(-x) = f(x)$$
 $0 \le x \le \alpha$,

f becomes an even element of $C[-\alpha, \alpha]$. Let E + O be a best approximation by T to f on $[-\alpha, \alpha]$, E a sum of even functions and O a sum of odd functions. The error curve of this best approximation is

$$f(x) - E(x) - O(x) = f(-x) - E(-x) + O(-x),$$

and so it follows that

$$\max\{|f(x) - E(x) - O(x)|: -\alpha \leqslant x \leqslant \alpha\}$$

$$= \max\{|f(x) - E(x) + O(x): -\alpha \leqslant x \leqslant \alpha\}.$$

Hence E-O is also best. But since T is a Chebyshev system, a best Chebyshev approximation is unique, hence $O \equiv 0$. Consider now the

problem of best approximation of f on $[0, \alpha]$ by a linear combination of $\{\phi_1, ..., \phi_n\}$. Suppose F was a best approximation, then by evenness of f - F,

$$\max\{|f(x) - F(x)| : 0 \leqslant x \leqslant \alpha\} = \max\{|f(x) - F(x)| : -\alpha \leqslant x \leqslant \alpha\}.$$

It follows that F is a best approximation on $[-\alpha, \alpha]$ by a linear combination of $\{\phi_1, ..., \phi_n\}$. But there is a unique solution to the problem, namely E. Since this is true for all f, $\{\phi_1, ..., \phi_n\}$ is a Haar subspace on $[0, \alpha]$.

Let f be a given element of the continuous functions on $[0, \alpha]$ vanishing at 0. By defining

$$f(-x) = -f(-x)$$
 $0 \le x \le \alpha$

f becomes an odd element of $C[-\alpha, \alpha]$. Let E + O be a best Chebyshev approximation by T to f on $[-\alpha, \alpha]$, E a sum of even functions and O a sum of odd functions. The error curve of this best approximation is

$$f(x) - E(x) - O(x) = -(f(-x) + E(-x) - O(-x))$$

and so it follows that

$$\max\{|f(x) - E(x) - O(x)|: -\alpha \leqslant x \leqslant \alpha\}$$

$$= \max\{|f(x) + E(x) - O(x)|: -\alpha \leqslant x \leqslant \alpha\}.$$

Hence -E + O is also best. But since T is a Chebyshev system, a best approximation is unique and so $E \equiv 0$. Consider now the problem of best approximation of f on $[0, \alpha]$ by a linear combination of $\{\psi_1, ..., \psi_m\}$. Suppose F was a best approximation, then by oddness of f - F,

$$\max\{|f(x) - F(x)| \colon 0 \leqslant x \leqslant \alpha\} = \max\{|f(x) - F(x)| \colon -\alpha \leqslant x \leqslant \alpha\}.$$

It follows that F is a best approximation on $[-\alpha, \alpha]$ by a linear combination of $\{\psi_1, ..., \psi_m\}$. But there is a unique solution to this problem, namely O. Since this is true for all f, $\{\psi_1, ..., \psi_m\}$ is a Haar subspace with null point 0.

6. Examples of Chebyshev Sets

EXAMPLE 1. $\{1, x, ..., x^n\}$ is a Chebyshev set on any finite interval. Let us consider arbitrary sets of nonnegative powers. Consideration of the case $\{1, x^2\}$ shows that these need not be Chebyshev sets on an interval containing zero as an interior point. Let α be positive and consider the interval $[0, \alpha]$. Let $0 < \gamma(1) < \cdots < \gamma(n)$. Since $x^{\gamma} = \exp(\gamma \log(x))$ for $\gamma > 0$ and $x \ge 0$, it can be deduced from the remarks following Example 6 that $\{x^{\gamma(1)}, ..., x^{\gamma(n)}\}$

is a Chebyshev set on $[0, \alpha]$ with null set $\{0\}$. If the function 1 is added, it is a Chebyshev set on $[0, \alpha]$.

- EXAMPLE 2. $\{1, \cos x, \sin x, ..., \cos(nx), \sin(nx)\}\$ is a Chebyshev set on $[-\pi, \pi]$ with endpoints identified [11, p. 84].
- EXAMPLE 3. $\{1, \cos x, ..., \cos(nx)\}$ is a Chebyshev set on $[0, \pi]$. An argument in terms of change of variable is used by Remez [11, p. 82], but we can also use Example 2 and Theorem 8.
- EXAMPLE 4. $\{\sin x,...,\sin(nx)\}\$ is a Chebyshev set on $[0,\pi]$ with null set 0 by Example 2 and Theorem 8, or by Example 3 and Lemma 4.
- EXAMPLE 5. $\{\exp(\gamma_1 x),...,\exp(\gamma_n x)\}$, $\gamma_1 < \cdots < \gamma_n$, is a Chebyshev set on any finite interval. An argument using a special case of Lemma 2 and induction is given by Remez [11, 80]. This example is a special case of Example 6 with $m(1) = m(1) = \cdots = m(n) = 0$.
- EXAMPLE 6. Let $\gamma_1 < \cdots < \gamma_n$. $\{\exp(\gamma_1 x), x \exp(\gamma_1 x), ..., x^{m(1)} \exp(\gamma_1 x), \exp(\gamma_2 x), ..., x^{m(2)} \exp(\gamma_2 x), ..., \exp(\gamma_n x), ..., x^{m(n)} \exp(\gamma_n x)\}$ forms a Chebyshev set on any finite interval [10, p. 313; 11, p. 81].

Let α be finite. The sets of Examples 5 and 6 are Chebyshev sets on $[\alpha, \infty]$ with null set $\{\infty\}$ when $\gamma_1 < \cdots < \gamma_n < 0$. The sets of Examples 5 and 6 are Chebyshev sets on $[\alpha, \infty]$ when $\gamma_1 < \cdots < \gamma_n = 0$ and m(n) = 0.

In the following three examples we still have a Chebyshev set if all powers of x indicated are deleted.

- EXAMPLE 7. Let $0 < \gamma_1 < \cdots < \gamma_n$. The set $\{\sinh(\gamma_i x), x \sinh(\gamma_i x), \cosh(\gamma_i x), x \cosh(\gamma_i x); i = 1,..., n\} \cup \{1, x,..., x^m\}$ is a Chebyshev set on any finite interval. The basis is equivalent to a basis of Example 6 with m(i) = 1 and powers of x added. It remains a Chebyshev set if any pairs $\{x \sinh(\gamma_i x), x \cosh(\gamma_i x)\}$ are deleted.
- Example 8. Let $0 < \gamma_1 < \cdots < \gamma_n$. The set $\{\sinh(\gamma_i x), x \cosh(\gamma_i x): i=1,...,n\} \cup \{x, x^3,..., x^{2m+1}\}$ is a Chebyshev set on $[0,\beta]$ with null set $\{0\}$ by Example 7 and Theorem 8. It remains a Chebyshev set if any elements $x \cosh(\gamma_i x)$ are deleted.
- EXAMPLE 9. Let $0 < \gamma_1 < \cdots < \gamma_n$. The set $\{\cosh(\gamma_i x), x \sinh(\gamma_i x): i = 1, ..., n\} \cup \{1, x^2, ..., x^{2m}\}$ is a Chebyshev set on $[0, \beta]$ by Example 7 and Theorem 8. It remains a Chebyshev set if any elements $x \sinh(\gamma_i x)$ are deleted.

EXAMPLE 10. Let α be a positive number and $-1/\alpha < \gamma_1 < \cdots < \gamma_n$. $\{1/(1+\gamma_1 x),...,1/(1+\gamma_n x)\}$ is a Chebyshev set on $[0,\alpha]$ by Cauchy's Lemma [1, p. 195]. If $0 < \gamma_1 < \cdots < \gamma_n$, it is a Chebyshev set on $[0,\infty]$ with null set $\{\infty\}$. If $0 = \gamma_1 < \cdots < \gamma_n$, it is a Chebyshev set on $[0,\infty]$.

EXAMPLE 11. Let $\alpha > 0$, $-1/\alpha < \gamma_1 < \cdots < \gamma_n$, and none of $\gamma_1,...,\gamma_n$ be zero. $\{\log(1+\gamma_1x),...,\log(1+\gamma_nx)\}$ is a Chebyshev set on $[0,\alpha]$ with null point 0 by Example 10 and Lemma 3. If the function 1 is added, we have a Chebyshev set on $[0,\alpha]$ by Example 10 and Lemma 2.

EXAMPLE 12. Let $\alpha > 0$ and $n, m \ge 0$. Let $0 < \gamma_1 < \dots < \gamma_m < 1/\alpha^2$ and $0 < \delta_1 < \dots < \delta_n$. {arctanh $(\gamma_1 x),\dots$, arctanh $(\gamma_m x)$, arctan $(\delta_1 x),\dots$, arctan $(\delta_n x)$ } is a Chebyshev set on $[0, \alpha]$ with null set $\{0\}$ by Example 10 (with change of variable to x^2) and Lemma 3. If the function 1 is added to the basis, we have a Chebyshev set on $[0, \alpha]$ by Example 10 and Lemma 2.

The corollary to Lemma 5 gives sufficient conditions for $\{1, \psi, x\psi'\}$ to be a Chebyshev set. In [6] are given many ψ and intervals (μ, ν) (sometimes $[0, \nu]$) on which $\{1, \psi, x\psi'\}$ is a Chebyshev set.

REFERENCES

- E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- P. C. Curtis, n-parameter families and best approximation, Pacific J. Math. 9 (1959), 1013–1027.
- 3. J. Dugundji, "Topology," Allyn and Bacon, Boston, MA, 1966.
- 4. C. B. Dunham, Best mean rational approximation, *Computing (Arch. Elektron. Rechnen)* 9 (1972), 87-93.
- 5. C. B. Dunham, Chebyshev approximation with a null point, Z. Angew. Math. Mech. 52 (1972), 239.
- 6. C. B. Dunham, Chebyshev approximation by $A + B*\phi(CX)$, Computing (Arch. Elektron. Rechnen), to appear.
- 7. C. B. DUNHAM, Linear Chebyshev approximation, Aequationes Math. 10 (1974), 40-45.
- 8. C. B. Dunham, Best discrete mean rational approximation, *Aequationes Math.*, to appear.
- 9. J. MAIRHUBER, On Haar's theorem concerning Chebyshev approximation problems having unique solutions, *Proc. Amer. Math. Soc.* 7 (1956), 609–615.
- G. Meinardus and D. Schwedt, Nicht-lineare Approximationen, Arch. Rational Mech. Anal. 17 (1964), 297–326.
- 11. E. Remez, General computational methods of Chebyshev approximation, translation, U.S. Atomic Energy Commission, 1962.
- J. Rice, "The Approximation of Functions," vol. 1, Addison-Wesley, Reading, MA, 1964.
- J. RICE, "The Approximation of Functions," vol. 2, Addison-Wesley, Reading, MA, 1969.